
Published as a conference paper at ICLR 2020

TRAINING GENERATIVE ADVERSARIAL NETWORKS
FROM INCOMPLETE OBSERVATIONS
USING FACTORISED DISCRIMINATORS

Daniel Stoller
Queen Mary University
London, UK
d.stoller@qmul.ac.uk

Sebastian Ewert
Spotify
Berlin, Germany
sewert@spotify.com

Simon Dixon
Queen Mary University
London, UK
s.e.dixon@qmul.ac.uk

ABSTRACT

Generative adversarial networks (GANs) have shown great success in applications
such as image generation and inpainting. However, they typically require large
datasets, which are often not available, especially in the context of prediction
tasks such as image segmentation that require labels. Therefore, methods such
as the CycleGAN use more easily available unlabelled data, but do not offer a
way to leverage additional labelled data for improved performance. To address
this shortcoming, we show how to factorise the joint data distribution into a set
of lower-dimensional distributions along with their dependencies. This allows
splitting the discriminator in a GAN into multiple “sub-discriminators” that can
be independently trained from incomplete observations. Their outputs can be
combined to estimate the density ratio between the joint real and the generator
distribution, which enables training generators as in the original GAN framework.
We apply our method to image generation, image segmentation and audio source
separation, and obtain improved performance over a standard GAN when additional
incomplete training examples are available. For the Cityscapes segmentation task
in particular, our method also improves accuracy by an absolute 14.9% over
CycleGAN while using only 25 additional paired examples.

1 INTRODUCTION

In generative adversarial networks (GANs) (Goodfellow et al., 2014) a generator network is trained
to produce samples from a given target distribution. To achieve this, a discriminator network is
employed to distinguish between “real” samples from the dataset and “fake” samples from the
generator network. The discriminator’s feedback is used by the generator to improve its output. While
GANs have become highly effective at synthesising realistic examples even for complex data such
as natural images (Radford et al., 2015; Karras et al., 2018), they typically rely on large training
datasets. These are not available in many cases, especially for prediction tasks such as audio source
separation (Stoller et al., 2018) or image-to-image translation (Zhu et al., 2017). Instead, one often
encounters many incomplete observations, such as unpaired images in image-to-image translation,
or isolated source recordings in source separation. However, standard GANs cannot be trained with
these observations. Recent approaches that work with unpaired data can not make use of additional
paired data (Zhu et al., 2017) or lead to computational overhead due to additional generators and
discriminators that model the inverse of the mapping of interest (Almahairi et al., 2018; Gan et al.,
2017). For training the generator, multiple losses are combined whose interactions are not clear and
that do not guarantee that the generator converges to the desired distribution.

In this paper, we adapt the standard GAN framework to enable training predictive models with both
paired and unpaired data as well as generative models with incomplete observations. To achieve
this, we split the discriminator into multiple “marginal” discriminators, each modelling a separate
set of dimensions of the input. As this modification on its own would ignore any dependencies
between these parts, we incorporate two additional “dependency discriminators”, each focusing
only on inter-part relationships. We show how the outputs from these marginal and dependency
discriminators can be recombined and used to estimate the same density ratios as in the original
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GAN framework – which enables training any generator network in an unmodified form. In contrast
to previous GANs, our approach only requires full observations to train the smaller dependency
discriminator and can leverage much bigger, simpler datasets to train the marginal discriminators,
which enables the generator to model the marginal distributions more accurately. Additionally, prior
knowledge about the marginals and dependencies can be incorporated into the architecture of each
discriminator. Deriving from first principles, we obtain a consistent adversarial learning framework
without the need for extra losses that rely on more assumptions or conflict with the GAN objective.

In our experiments, we apply our approach (“FactorGAN”) 1 to two image generation tasks (Sec-
tions 4.1 and 4.2), image segmentation (Section 4.3) and audio source separation (Section 4.4), and
observe improved performance in missing data scenarios compared to a GAN. For image segmen-
tation, we also compare to the CycleGAN (Zhu et al., 2017), which does not require images to be
paired with their segmentation maps. By leveraging both paired and unpaired examples with a unified
adversarial objective, we achieve a substantially higher segmentation accuracy even with only 25
paired samples than GAN and CycleGAN models.

2 METHOD

After a brief summary of GANs in Section 2.1, we introduce our method from a missing data
perspective in Section 2.2, before extending it to conditional generation (Section 2.3) and the case of
independent outputs (Section 2.4).

2.1 GENERATIVE ADVERSARIAL NETWORKS

To model a probability distribution px over x ∈ Rd, we follow the standard GAN framework
and introduce a generator model Gφ : Rn → Rd that maps an n-dimensional input z ∼ pz to a
d-dimensional sample Gφ(z), resulting in the generator distribution qx. To train Gφ such that qx
approximates the real data density px, a discriminatorDθ : Rd → (0, 1) is trained to estimate whether
a given sample is real or generated:

argmax
θ

Ex∼px logDθ(x) + Ex∼qx log(1−Dθ(x)). (1)

In the non-parametric limit (Goodfellow et al., 2014), Dθ(x) approaches D̃(x) := px(x)
px(x)+qx(x)

at

every point x. The generator is updated based on the discriminator’s estimate of D̃(x). In this paper,
we use the alternative loss function for Gφ as proposed by Goodfellow et al. (2014):

argmax
θ

Ez∼pz logDθ(Gφ(z)). (2)

2.2 ADAPTATION TO MISSING DATA

In the following we consider the case that incomplete observations are available in addition to our
regular dataset (i.e. simpler yet larger datasets). In particular, we partition the set of d input dimensions
of x into K (2 ≤ K ≤ d) non-overlapping subsets D1, . . . ,DK . For each i ∈ {1, . . . ,K}, an
incomplete (“marginal”) observation xi can be drawn from pix, which is obtained from px after
marginalising out all dimensions not in Di. Analogously, qix denotes the i-th marginal distribution of
the generator Gφ. Next, we extend the existing GAN framework such we can employ the additional
incomplete observations. In this context, a main hurdle is that a standard GAN discriminator is trained
with samples from the full joint px. To eliminate this restriction, we note that D̃(x) can be mapped to
a “joint density ratio” px(x)

qx(x)
by applying the bijective function h : [0, 1)→ R+, h(a) = − a

a−1 . For
our approach, we exploit that this joint density ratio can be factorised into a product of density ratios:

h(D̃(x)) =
px(x)

qx(x)
=
cP (x)

cQ(x)

K∏
i=1

pix(x
i)

qix(x
i)

with

cP (x) =
px(x)∏K
i=1 p

i
x(x

i)
and cQ(x) =

qx(x)∏K
i=1 q

i
x(x

i)
.

(3)

1Code available at https://github.com/f90/FactorGAN
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Each “marginal density ratio” pix(x
i)

qix(x
i) captures the generator’s output quality for one marginal vari-

able xi, while the cP and cQ terms describe the dependency structure between marginal variables
in the real and generated distribution, respectively. Note that our theoretical considerations assume
that the densities px and qx are non-zero everywhere. While this might not be fulfilled in practice,
our implementation does not directly compute density ratios and instead relies on the same assump-
tions as Goodfellow et al. (2014). We can estimate each density ratio independently by training a
“sub-discriminator” network, and combine their outputs to estimate D̃(x), as shown below.

Estimating the marginal density ratios: To estimate pix(x
i)

qix(x
i) for each i ∈ {1, . . . ,K}, we train a

“marginal discriminator network” Dθi : R|Di| → (0, 1) with parameters θi to determine whether a
marginal sample xi is real or generated following the GAN discriminator loss in Equation (1) 2. This
allows making use of the additional incomplete observations. In the non-parametric limit, Dθi(x

i)

will approach D̃i(x
i) :=

pix(x
i)

pix(x
i)+qix(x

i) , so that we can use h(Dθi(x
i)) as an estimate of p

i
x(x

i)
qix(x

i) .

Estimation of cP (x) and cQ(x): Note that cP and cQ are also density ratios, this time containing
a distribution over x in both the numerator and denominator – the main difference being that in the
latter the individual parts xi are independent from each other. To approximate the ratio cP , we can
apply the same principles as above and train a “p-dependency discriminator” DP

θP
: Rd → (0, 1) to

distinguish samples from the two distributions, i.e. to discriminate real joint samples from samples
where the individual parts are real but were drawn independently of each other (i.e. the individual
parts might not originate from the same real joint sample). Again, in the non-parametric limit, its
response approaches D̃P (x) := px(x)

px(x)+
∏K
i=1 p

i
x(x

i)
and thus cP can be approximated via h ◦DP

θP
.

Analogously, the cQ term is estimated with a “q-dependency discriminator” DQ
θQ

– here, we compare
joint generator samples with samples where the individual parts were shuffled across several generated
samples (to implement the independence assumption).

Joint discriminator sample complexity: In contrast to cQ, where the generator provides an infinite
number of samples, estimating cP without overfitting to the limited number of joint training samples
can be challenging. While standard GANs suffer from the same difficulty, our factorisation into
specialised sub-units allows for additional opportunities to improve the sample complexity. In
particular, we can design the architecture of the p-dependency discriminator to incorporate prior
knowledge about the dependency structure3.

Combining the discriminators: As the marginal and the p- and q-dependency sub-discriminators
provide estimates of their respective density ratios, we can multiply them and apply h−1 to obtain
the desired ratio D̃(x), following Equation (3). This can be implemented in a simple and stable
fashion using a linear combination of pre-activation sub-discriminator outputs followed by a sigmoid
(see Section A.4 for details and proof). The time for a generator update step grows linearly with the
number of marginals K, assuming the time to update each of the K marginal discriminators remains
constant.

2.3 ADAPTATION TO CONDITIONAL GENERATION

Conditional generation, such as image segmentation or inpainting, can be performed with GANs
by using a generator Gφ that maps a conditional input x1 and noise to an output x2, resulting in an
output probability qφ(x2|x1).

When viewing x1 and x2 as parts of a joint variable x := (x1,x2) with distribution px, we can also
frame the above task as matching px to the joint generator distribution qx(x) := p1x(x

1)qφ(x
2|x1).

In a standard conditional GAN, the discriminator is asked to distinguish between joint samples from
px and qx, which requires paired samples from px and is inefficient as the inputs x1 are the same in

2Samples are drawn from pix and qix instead of px and qx, respectively.
3If only certain features of a marginal variable influence the dependencies, we can limit the input to the

p-dependency discriminator to these features instead of the full marginal sample to prevent overfitting.
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both px and qx. In contrast, applying our factorisation principle from Equation (3) to x1 and x2 (for
the special case K = 2) yields

px(x)

qx(x)
=

px(x)
p1x(x

1)p2x(x
2)

qx(x)
q1x(x

1)q2x(x
2)

p2x(x
2)

q2x(x
2)

=
cP (x)

cQ(x)

p2x(x
2)

q2x(x
2)
, (4)

suggesting the use of a p- and a q-dependency discriminator to model the input-output relationship,
and a marginal discriminator over x2 that matches aggregate generator predictions from q2x to real
output examples from p2x. Note that we do not need a marginal discriminator for x1, which increases
computational efficiency. This adaptation can also involve additionally partitioning x2 into multiple
partial observations as shown in Equation 3.

2.4 ADAPTION TO INDEPENDENT MARGINALS

In case the marginals can be assumed to be completely independent, one can remove the p-dependency
discriminator from our framework, since cP (x) = 1 for all inputs x. This approach can be useful in
the conditional setting, when each output is related to the input but their marginals are independent
from each other. In this setting, our method is related to adversarial ICA (Brakel & Bengio, 2017).
Note that the q-dependency discriminator still needs to be trained on the full generator outputs if the
generator should not introduce unwanted dependencies between the marginals.

2.5 FURTHER EXTENSIONS

There are many more ways of partitioning the joint distribution into marginals. We discuss two
additional variants (Hierarchical and auto-regressive FactorGANs) of our approach in Section A.3.

3 RELATED WORK

For conditional generation, “CycleGAN” (Zhu et al., 2017) exploits unpaired samples by assuming
a one-to-one mapping between the domains and using bidirectional generators (along with Gan
et al. (2017)), while FactorGAN makes no such assumptions and instead uses paired examples to
learn the dependency structure. Almahairi et al. (2018) and Tripathy et al. (2018) learn from paired
examples with an additional reconstruction-based loss, but use a sum of many different loss terms
which have to be balanced by additional hyper-parameters. Additionally, it can not be applied to
generation tasks with missing data or prediction tasks with multiple outputs. Brakel & Bengio (2017)
perform independent component analysis in an adversarial fashion using a discriminator to identify
correlations. Similarly to our q-dependency discriminator, the separator outputs are enforced to
be independent, but our method is fully adversarial and can model arbitrary dependencies with the
p-dependency discriminator. GANs were also used for source separation, but dependencies were
either ignored (Zhang et al., 2017) or modelled with an additional L2 loss (Stoller et al., 2018) that
supports only deterministic separators.

Pu et al. (2018) use GANs for joint distribution modelling by training a generator for each possible
factorisation of the joint distribution, but this requires K! generators for K marginals, whereas we
assume either all parts or exactly one part of the variable of interest is observed to avoid functional
redundancies between the different networks. Karaletsos (2016) propose adversarial inference on
local factors of a high-dimensional joint distribution and factorise both generator and discriminator
based on independence assumptions given by a Bayesian network, whereas we keep a joint sample
generator and model all dependencies. Finally, Yoon et al. (2018) randomly mask the inputs to a GAN
generator so it learns to impute missing values, whereas our generator aims to learn a transformation
where inputs are fully observed.

4 EXPERIMENTS

To validate our method, we compare our FactorGAN with the regular GAN approach, both for
unsupervised generation as well as supervised prediction tasks. For the latter, we also compare to the
CycleGAN (Zhu et al., 2017) as an unsupervised baseline. To investigate whether FactorGAN makes
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efficient use of all observations, we vary the proportion of the training samples available for joint
sampling (paired), while using the rest to sample from the marginals (unpaired). We train all models
using a single NVIDIA GTX 1080 GPU.

Training procedure For stable training, we employ spectral normalisation (Miyato et al., 2018)
on each discriminator network to ensure they satisfy a Lipschitz condition. Since the overall output
used for training the generator is simply a linear combination of the individual discriminators (see
Section A.4), the generator gradients are also constrained in magnitude accordingly. Unless otherwise
noted, we use an Adam optimiser with learning rate 10−4 and a batch size of 25 for training all
models. We perform two discriminator updates after each generator update.

4.1 PAIRED MNIST

Our first experiment will involve “Paired MNIST”, a synthetic dataset of low complexity whose
dependencies between marginals can be easily controlled. More precisely, we generate a paired
version of the original MNIST dataset4 by creating samples that contain a pair of vertically stacked
digit images. With a probability of λ, the lower digit chosen during random generation is the same
as the upper one, and different otherwise. For FactorGAN, we model the distributions of upper and
lower digits as individual marginal distributions (K = 2).

Experimental setup We compare the normal GAN with our FactorGAN, also including a variant
without p-dependency discriminator that assumes marginals to be independent (“FactorGAN-no-cp”).
We conduct the experiment with λ = 0.1 and λ = 0.9 and also vary the amount of training samples
available in paired form, while keeping the others as marginal samples only usable by FactorGAN.
For both generators and discriminators, we used simple multi-layer perceptrons (Tables 1 and 2).

To evaluate the quality of generated digits, we adopt the “Frecht Inception Distance” (FID) as
metric (Heusel et al., 2017). It is based on estimating the distance between the distributions of hidden
layer activations of a pre-trained Imagenet object detection model for real and fake examples. To
adapt the metric to MNIST data, we pre-train a classifier to predict MNIST digits (see Table 3) on the
training set for 20 epochs, obtaining a test accuracy of 98%. We input the top and bottom digits in
each sample separately to the classifier and collect the activations from the last hidden layer (FC1)
to compute FIDs for the top and bottom digits, respectively. We use the average of both FIDs to
measure the overall output quality of the marginals (lower value is better).

Since the only dependencies in the data are digit correlations controlled by λ, we can evaluate how
well FactorGAN models these dependencies. We compute pD(Dt, Db) as the probability for a real
sample to have digit Dt ∈ {0, . . . , 9} at the top and digit Db ∈ {0, . . . , 9} at the bottom, along with
marginal probabilities ptD(Dt) and pbD(Db) (and analogously qD(Dt, Db) for generated data). Since
we do not have ground truth digit labels for the generated samples, we instead use the class predicted
by the pre-trained classifier. We encode the dependency as a ratio between a joint and the product of
its marginals, where the ratios for real and generated data are ideally the same. Therefore, we take
their absolute difference for all digit combinations as evaluation metric (lower is better):

ddep =
1

100

9∑
Dt=0

9∑
Db=0

∣∣∣ pD(Dt, Db)

ptD(Dt)pbD(Db)
− qD(Dt, Db)

qtD(Dt)qbD(Db)

∣∣∣ . (5)

Note that the metric computes how well dependencies in the real data are modelled by a generator,
but not whether it introduces any additional unwanted dependencies such as top and bottom digits
sharing stroke thickness, and thus presents only a necessary condition for a good generator.

Results The results of our experiment are shown in Figure 1. Since FactorGAN-no-cp trains on
all samples independently of the number of paired observations, both FID and ddep are constant. As
expected, FactorGAN-no-cp delivers good digit quality, and performs well for λ = 0.1 (as it assumes
independence) and badly for λ = 0.9 with regards to dependency modelling.

FactorGAN outperforms GAN with small numbers of paired samples in terms of FID by exploiting
the additional unpaired samples, although this gap closes as both models eventually have access to

4http://yann.lecun.com/exdb/mnist/
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Figure 1: Performance with different numbers of paired training samples and settings for λ compared
between GAN and FactorGAN with and without dependency modelling.

the same amount of data. FactorGAN also consistently improves in modelling the digit dependencies
with an increasing number of paired observations. For λ = 0.1, this also applies to the normal
GAN, although its performance is much worse for small sample sizes as it introduces unwanted digit
dependencies. Additionally, its performance appears unstable for λ = 0.9, where it achieves the best
results for a small number of paired examples. Further improvements in this setting could be gained
by incorporating prior knowledge about the nature of these dependencies into the p-dependency
discriminator to increase its sample efficiency, but this is left for future work.

4.2 IMAGE PAIR GENERATION

In this section, we use GAN and FactorGAN for generating pairs of images in an unsupervised way
to evaluate how well FactorGAN models more complex data distributions.

Datasets We use the “Cityscapes” dataset (Cordts et al., 2016) and the “Edges2Shoes” dataset (Isola
et al., 2016). To keep the outputs in a continuous domain, we treat the segmentation maps in the
Cityscapes dataset as RGB images, instead of a set of discrete categorical labels. Each input and
output image is downsampled to 64 × 64 pixels as a preprocessing step to reduce computational
complexity and to ensure stable GAN training.

Experimental setup We define the distributions of input as well as output images as marginal
distributions. Therefore, FactorGAN uses two marginal discriminators and a p- and q-dependency
discriminator. All discriminators employ a convolutional architecture shown in Table 5 with W = 6
and H = 6. To control for the impact of discriminator size, we also train a GAN with twice
the number of filters in each discriminator layer to match its size with the combined size of the
FactorGAN discriminators. The same convolutional generator shown in Table 4 is used for GAN
and FactorGAN. Each image pair is concatenated along the channel dimension to form one sample,
so that C = 6 for the Cityscapes and C = 4 for the Edges2Shoes dataset (since edge maps are
greyscale). We make either 100, 1000, or all training samples available in paired form, to investigate
whether FactorGAN can improve upon GAN by exploiting the remaining unpaired samples or match
its quality if there are none.

For evaluation, we randomly assign 80% of validation data to a “test-train” and the rest to a “test-test”
partition. We train an LSGAN discriminator (Mao et al., 2017) with the architecture shown in Table 5
(but half the filters in each layer) on the test-train partition for 40 epochs to distinguish real from
generated samples, before measuring its loss on the test set. We continuously sample from the
generator during training and testing instead of using a fixed set of samples to better approximate the
true generator distribution. As evaluation metric, we use the average test loss over 10 training runs,
which was shown to correlate with subjective ratings of visual quality (Im et al., 2018) and also with
our own quality judgements throughout this study. A larger value indicates better performance, as we
use a flipped sign compared to Im et al. (2018). While the quantitative results appear indicative of
output quality, accurate GAN evaluation is still an open problem and so we encourage the reader to
judge generated examples given in Section A.5.
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Figure 2: GAN and FactorGAN output quality estimated by the LS metric for different datasets and
numbers of paired samples. Error bars show 95% confidence intervals.
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Figure 3: Examples generated for the Edges2Shoes dataset using 100 paired samples

Results Our FactorGAN achieves better or similar output quality compared to the GAN baseline
in all cases, as seen in Figure 2. For the Edges2Shoes dataset, the performance gains are most pro-
nounced for small numbers of paired samples. On the more complex Cityscapes dataset, FactorGAN
outperforms GAN by a large margin independent of training set size, even when the discriminators
are closely matched in size. This suggests that FactorGAN converges with fewer training iterations
for Gφ, although the exact cause is unclear and should be investigated in future work.

We show some generated examples in Figure 3. Due to the small number of available paired samples,
we observe a strong mode collapse of the GAN in Figure 3a, while FactorGAN provides high-fidelity,
diverse outputs, as shown in Figure 3b. Similar observations can be made for the Cityscapes dataset
when using 100 paired samples (see Section A.5.2).

4.3 IMAGE SEGMENTATION

Our approach extends to the case of conditional generation (see Section 2.3), so we tackle a complex
and important image segmentation task on the Cityscapes dataset, where we ask the generator to
predict a segmentation map for a city scene (instead of generating both from scratch as in Section 4.2).

Experimental setup We downsample the scenes and segmentation maps to 128× 128 pixels and
use a U-Net architecture (Ronneberger et al., 2015) (shown in Table 6 with W = 7 and C = 3) as
segmentation model. For FactorGAN, we use one marginal discriminator to match the distribution of
real and fake segmentation maps to ensure realistic predictions, which enables training with isolated
city scenes and segmentation maps. To ensure the correct predictions for each city scene, a p- and a
q-dependency discriminator learns the input-output relationship using joint samples, both employing
a convolutional architecture shown in Table 5. Note that as in Section 4.2, we output segmentation
maps in the RGB space instead of performing classification. In addition to the MSE in the RGB space,
we compute the widely used pixel-wise classification accuracy (Cordts et al., 2016) by assigning each
output pixel to the class whose colour has the lowest Euclidean distance in RGB space.

Using the same experimental setup (including network architectures), we also implement the Cycle-
GAN (Zhu et al., 2017) as an unsupervised baseline. For the CycleGAN objective, the same GAN
losses as shown in (1) and (2) are used5.

Results The results in Figure 4 demonstrate that our approach can exploit additional unpaired
samples to deliver better MSE and accuracy than a GAN and less noisy outputs as seen in Figure 5.

5Code to perform one training iteration and default loss weights taken from the official codebase at
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 4: MSE (left) and accuracy (right) obtained on the Cityscapes dataset with different numbers
of paired training samples for the GAN and FactorGAN

(a) GAN (b) FactorGAN

Figure 5: Segmentation predictions made on the Cityscapes dataset for the same set of test inputs,
compared between models, using 100 paired samples for training

When using only 25 paired samples, FactorGAN reaches 71.6% accuracy, outperforming both GAN
and CycleGAN by an absolute 17.7% and 14.9%, respectively. CycleGAN performs better than GAN
only in this setting, and increasingly falls behind both GAN and FactorGAN with a growing number
of paired samples, likely since GAN and FactorGAN are able to improve their input-output mapping
gradually while CycleGAN remains reliant on its cycle consistency assumption. These findings
suggest that FactorGAN can efficiently learn the dependency structure from few paired samples with
more accuracy than a CycleGAN that is limited by its simplistic cycle consistency assumption.

4.4 AUDIO SOURCE SEPARATION

We apply our method to audio source separation as another conditional generation task to investigate
whether it transfers across domains. Specifically, we separate music signals into singing voice and
accompaniment, as detailed in Section A.2. As in Section 4.3, we find that FactorGAN provides
better separtion than GAN, suggesting that our factorisation is useful across problem domains.

5 DISCUSSION

We find that FactorGAN outperforms GAN across all experiments when additional incomplete
samples are available, especially when they are abundant in comparison to the number of joint
samples. When using only joint observations, FactorGAN should be expected to match the GAN
in quality, and it does so quite closely in most of our experiments. Surprisingly, it outperforms
GAN in some scenarios such as image segmentation even with matched discriminator sizes – a
phenomenon we do not fully understand yet and should be investigated in the future. For image
segmentation, FactorGAN substantially improves segmentation accuracy compared to the fully
unsupervised CycleGAN model even when only using 25 paired examples, indicating that it can
efficiently exploit the pairing information.

Since the p-dependency discriminator does not rely on generator samples that change during training,
it could be pre-trained to reduce computation time, but this led to sudden training instabilities in our
experiments. We suspect that this is due to a mismatch between training and testing conditions for the
p-dependency discriminator since it is trained on real but evaluated on fake data, and neural networks
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can yield overly confident predictions outside the support of the training set (Gal & Ghahramani,
2016). Therefore, we expect classifiers with better uncertainty calibration to alleviate this issue.

6 CONCLUSION

In this paper, we demonstrated how a joint distribution can be factorised into a set of marginals and
dependencies, giving rise to the FactorGAN – a GAN in which the discriminator is split into parts
that can be independently trained with incomplete observations. For both generation and conditional
prediction tasks in multiple domains, we find that FactorGAN outperforms the standard GAN when
additional incomplete observations are available. For Cityscapes scene segmentation in particular,
FactorGAN achieves a much higher accuracy than the supervised GAN as well as the unsupervised
CycleGAN, while requiring only 25 of all examples to be annotated.

Factorising discriminators enables incorporating more prior knowledge into the design of neural
architectures in GANs, which could improve empirical results in applied domains. The presented
factorisation is generally applicable independent of model choice, so it can be readily integrated into
many existing GAN-based approaches. Since the joint density can be factorised in different ways,
multiple extensions are conceivable depending on the particular application (as shown in Section A.3).
This paper derives FactorGAN from the original GAN proposed by Goodfellow et al. (2014) by
exploiting the probabilistic view of the optimal discriminator. Adapting the FactorGAN to alternative
GAN objectives (such as the Wasserstein GAN (Arjovsky et al., 2017)) might be possible as well.
Instead of relying on additional techniques such as spectral normalisation to ensure training stability,
which our theory does not explicitly incorporate, this would enable the use of an inherently more
stable GAN variant with the same theoretical guarantees.
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A APPENDIX

A.1 TABLES

Table 1: The architecture of our generator on the MNIST dataset. All layers have biases.

Layer Input shape Outputs Output shape Activation

FC 50 128 128 ReLU
FC 128 128 128 ReLU
FC 128 1568 56× 28× 1 Sigmoid

Table 2: The architecture of our discriminators on the paired MNIST dataset. W = 28 for marginal,
W = 56 for dependency discriminators.

Layer Input shape Outputs Output shape Activation

FC W · 28 128 128 LeakyReLU
FC 128 128 128 LeakyReLU
FC 128 1 1 -

Table 3: The architecture of our MNIST classifier. Dropout with probability 0.5 is applied to FC1
outputs.

Layer Input shape Filter size Stride Outputs Output shape Activation

Conv 28× 28× 1 5× 5 1× 1 10 28× 28× 10 -
AvgPool 28× 28× 10 2× 2 2× 2 10 12× 12× 10 LeakyReLU

Conv 12× 12× 10 5× 5 1× 1 20 12× 12× 20 -
AvgPool 12× 12× 20 2× 2 2× 2 20 4× 4× 20 LeakyReLU

FC1 320 - - 50 50 LeakyReLU
FC2 50 - - 10 10 -

Table 4: The architecture of our convolutional generator. “ConvT” represent transposed convolutions.
All layers have biases. The number of output channels C depends on the task.

Layer Input shape Filter size Stride Outputs Output shape Activation

ConvT 1× 1× 50 4× 4 1× 1 1024 4× 4× 1024 ReLU
ConvT 4× 4× 1024 4× 4 2× 2 512 8× 8× 512 ReLU
ConvT 8× 8× 512 4× 4 2× 2 256 16× 16× 256 ReLU
ConvT 16× 16× 256 4× 4 2× 2 128 32× 32× 128 ReLU
ConvT 32× 32× 128 4× 4 2× 2 64 64× 64× 64 ReLU
Conv 64× 64× 64 4× 4 1× 1 C 64× 64× C Sigmoid
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Table 5: The architecture of our convolutional discriminator. All layers except FC have biases. W , H
and C are set for each task so that the dimensions of the input data are matched.

Layer Input shape Filter size Stride Outputs Output shape Activation

Conv 2W × 2H × C 4× 4 2× 2 32 2W−1 × 2H−1 × 32 LeakyReLU
Conv 2W−1 × 2H−1 × 32 4× 4 2× 2 64 2W−2 × 2H−2 × 64 LeakyReLU
Conv 2W−2 × 2H−2 × 64 4× 4 2× 2 128 2W−3 × 2H−3 × 128 LeakyReLU
Conv 2W−3 × 2H−3 × 128 4× 4 2× 2 256 2W−4 × 2H−4 × 256 LeakyReLU
Conv 2W−4 × 2H−4 × 256 4× 4 2× 2 512 2W−5 × 2H−5 × 512 LeakyReLU
FC 2W−5 · 2H−5 · 512 - - 1 1 LeakyReLU

Table 6: The architecture of our U-Net. The height H and number of input channels C depends on
the experiment. MP is maxpooling with stride 2. FC has noise as input. UpConv performs transposed
convolution with stride 2. Concat concatenates the current feature map with one from the downstream
path. The final output is computed depending on the task (see text for more details)

Layer Input (shape) Outputs Output shape

DoubleConv1 2W × 128× C 32 2W × 128× 32
MP1 2W × 128× 32 32 2W−1 × 64× 32

DoubleConv2 2W−1 × 64× 32 64 2W−1 × 64× 64
MP2 2W−1 × 64× 64 64 2W−2 × 32× 64

DoubleConv3 2W−2 × 32× 64 64 2W−2 × 32× 128
MP3 2W−2 × 32× 128 128 2W−3 × 16× 128

DoubleConv4 2W−3 × 16× 128 256 2W−3 × 16× 256
MP4 2W−3 × 16× 256 256 2W−4 × 8× 256

DoubleConv5 2W−4 × 8× 256 256 2W−4 × 8× 256

FC 50 2W−4 · 16 2W−4 × 8× 2
Concat DoubleConv5 - 2W−4 × 8× 258

UpConv 2W−4 × 8× 258 256 2W−3 × 16× 258
Concat DoubleConv4 514 2W−3 × 16× 514
Conv 2W−3 × 16× 514 128 2W−3 × 16× 128

UpConv 2W−3 × 16× 128 128 2W−2 × 32× 128
Concat DoubleConv3 256 2W−2 × 32× 256
Conv 2W−2 × 32× 256 64 2W−2 × 32× 64

UpConv 2W−2 × 32× 64 64 2W−1 × 64× 64
Concat DoubleConv2 128 2W−1 × 64× 128
Conv 2W−1 × 64× 128 32 2W−1 × 64× 32

UpConv 2W−1 × 64× 32 32 2W × 128× 32
Concat DoubleConv1 64 2W × 128× 64
Conv 2W × 128× 64 32 2W × 128× 32

Conv 2W × 128× 32 C 2W × 128× C

Table 7: The DoubleConv neural network block used in the U-Net. Conv uses a 3× 3 filter size.

Layer Input shape Outputs Output shape

Conv W ×H × C C
2

W ×H × C
2

BatchNorm & ReLU W ×H × C
2

- W ×H × C
2

Conv W ×H × C
2

C
2

W ×H × C
2

BatchNorm & ReLU W ×H × C
2

- W ×H × C
2
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Figure 6: GAN and FactorGAN separation performance for different numbers of paired samples

A.2 AUDIO SOURCE SEPARATION EXPERIMENT

For our audio source separation experiment, our generator Gφ takes a music spectrogram m along
with noise z and maps it to an estimate of the accompaniment and vocal spectra a and v, implicitly
defining an output probability qφ(a,v|m). We define the joint real and generated distributions that
should be matched as p(m,a,v) and q(m,a,v) = qφ(a,v|m)p(m). Since the source signals in our
dataset are simply added in the time-domain to produce the mixture, this approximately applies to the
spectrogram as well, so we assume that p(m|a,v) = δ(m− a− v). We can constrain our generator
Gφ to make predictions that always satisfy this condition, thereby taking care of the input-output
relationship manually, similarly to Sønderby et al. (2017). Instead of predicting the sources directly, a
mask b with values in the range [0, 1] is computed, and the accompaniment and vocals are estimated
as b�m and (b− 1)�m, respectively. As a result, q(m|a,v) = p(m|a,v), so we can simplify
the joint density ratio to

p(m,a,v)

q(m,a,v)
=
p(a,v)p(m|a,v)
q(a,v)q(m|a,v)

=
p(a,v)

q(a,v)
=
cP (a,v)

cQ(a,v)

p(a)

q(a)

p(v)

q(v)
, (6)

meaning that the discriminator(s) in the GAN and the FactorGAN only require (a,v) pairs, but not
the mixture m as additional input, as the correct input-output relationship is already incorporated into
the generator. Furthermore, the last equality suggests a FactorGAN application with one marginal
discriminator for each source along with dependency discriminators to model source dependencies.

Dataset We use MUSDB (Rafii et al., 2017) as multi-track dataset for our experiment, featuring
100 songs for training and 50 songs for testing. Each song is downsampled to 22.05 KHz before
spectrogram magnitudes are computed, using an STFT with a 512-sample window and a 256-sample
hop6. Snippets with 128 timeframes each are created by cropping each song’s full spectrogram at
regular intervals of 64 timeframes. Thus, the generator only separates snippets m ∈ R256×128

≥0 and
outputs predictions of the same shape, however this does not change the derivation presented in
Equation (6), and longer inputs at test time can be processed by partitioning them into snippets and
concatenating the model predictions.

Experimental setup For our generator, we use the U-Net architecture detailed in Table 6 with
W = 8 and C = 1. We use the convolutional discriminator described in Table 5 with W = 8, H = 7
and C = 1. The source dependency discriminators take two sources as input via concatenation along
the channel dimension, so they use C = 2.

In each experiment, we vary the number of training songs whose snippets are available for paired
training between 10, 20 and 50 and compare between GAN and FactorGAN. The spectrograms
predicted on the test set are converted to audio with the inverse STFT by reusing the phase from the
mixture, and then evaluated using the signal-to-distortion ratio (SDR), a well-established evaluation
metric for source separation (Vincent et al., 2006).

Results Figure 6 shows our separation results. Compared to a GAN, the separation performance is
significantly higher using FactorGAN. As expected, FactorGAN improves slightly with more paired
examples, which is not the case for the GAN – here we find that the vocal output becomes too quiet

6This results in 257 frequency bins but we discard the bin with the highest frequency to obtain a power of 2
and thus avoid padding issues in our network architectures.
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when increasing the number of songs for training, possibly a sign of mode collapse. Similarly to the
results seen in the image pair generation experiments, we suspect that the FactorGAN discriminator
might approximate the joint density D̃(x) more closely than the GAN discriminator due to its use of
multiple discriminators, although the reasons for this are not yet understood.

A.3 POSSIBLE EXTENSIONS

We can decompose the joint density ratio px(x)
qx(x)

in other ways than shown in Equation 3 in the paper.
In the following, we discuss two additional possibilities.

A.3.1 HIERARCHICAL FACTORGAN

The decomposition of the joint density ratio could be applied recursively, splitting the obtained
marginals further into “sub-marginals” and their dependencies, which could be repeated multiple
times. In addition to training with incomplete observations where only a single part is given, this also
allows making use of samples where only sub-parts of these parts are given and is thus more flexible
than a single factorisation as used in the standard FactorGAN.

As a demonstration, we split each marginal xi further into a group of Ji marginals, Ji ≤ |Di|, and
their dependencies, without further recursion for simplicity:

px(x)

qx(x)
=
cP (x)

cQ(x)

K∏
i=1

pix(x
i)

qix(x
i)

=
cP (x)

cQ(x)

[
K∏
i=1

ciP (x
i)

ciQ(x
i)

[
J∏
j=1

pi,jx (xi,j)

qi,jx (xi,j)

]]
. (7)

ciP and ciQ are dependency terms analogously to cP and cQ, but only defined on marginal variable xi,
whose J “sub-marginals” are denoted by xi,1, . . . ,xi,J .

Such a hierarchical decomposition might also be beneficial if the data is known to be generated from
a hierarchical process. We leave the empirical exploration of this concept to future work.

A.3.2 AUTOREGRESSIVE FACTORGAN

For a multi-dimensional variable x = [x1,x2, . . . ,xT ] composed of T elements arranged in a
sequence, such as time series data, the joint density ratio can also be decomposed in a causal,
auto-regressive fashion:

px(x)

qx(x)
=
p1x(x

1)

q1x(x
1)

T∏
i=2

cP (x
1, . . . ,xi)

cQ(x1, . . . ,xi)

px(x
i)

qx(xi)
(8)

=
p1x(x

1)

q1x(x
1)

T∏
i=2

px(xi|x1, . . . ,xi−1)

qx(xi|x1, . . . ,xi−1)
(9)

Note that cP is defined here as p(x)
p(x1,...,xi−1)p(xi) (cQ analogously using qx). Equation (8) suggests

an auto-regressive version of FactorGAN in which the generator output quality at each time-step
i is evaluated using a marginal discriminator that estimates px(x

i)
qx(xi)

combined with dependency
discriminators that model the dependency between the current and all past time-steps.

The final product formulation in Equation (9) reveals a close similarity to auto-regressive models
and suggests a modification of the normal GAN with an auto-regressive discriminator that rates an
input at each time-step given the previous ones. Using a derivation analogous to the one shown in
Section A.4, this implies taking the unnormalised discriminator outputs at each time-step, summing
them, and applying a sigmoid non-linearity to obtain the overall estimate of the probability D̃(x). A
similar implementation was used before in Mogren (2016), attempting to stabilise GAN training with
recurrent neural networks as discriminators, but for the first time, we provide a rigorous theoretical
justification for this practice here.

A.4 DISCRIMINATOR COMBINATION

Definition A.1. Sigmoid discriminator output. Let Dθi(x
i) := σ(dθi(x

i)), dθi : R|Di| → R for all
i ∈ {1, . . . ,K}, analogously define DP

θP
(x) and DQ

θQ
(x).
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Definition A.2. Combined discriminator. Let DC(x) := σ(dPθP (x)− d
Q
θQ

(x) +
∑K
i=1 dθi(x

i)) be
the output of the combined discriminator that is used for training Gφ using Equation 2.

Theorem 1. Combined discriminator approximates D̃(x). Under definitions A.1 and A.2 and
assuming optimally trained sub-discriminators, DC(x) = D̃(x) = px(x)

px(x)+qx(x)
.

Proof. Proof of Theorem 1 using Definitions A.1 and A.2:

DC(x)

= σ

(
dPθP (x)− d

Q
θQ

(x) +

K∑
i=1

dθi(x
i)

)

=

(
1 + e−d

P
θP

(x)e
dQθQ

(x)
K∏
i=1

e−dθi (x
i)

)−1

=

(
1 +

1−DP
θP

(x)

DP
θP

(x)

DQ
θQ

(x)

1−DQ
θQ

(x)

K∏
i=1

1−Dθi(x
i)

Dθi(x
i)

)−1

=

(
1 +

∏K
i=1 px(x

i)

px(x)

qx(x)∏K
i=1 q

i
x(x

i)

K∏
i=1

qix(x
i)

px(xi)

)−1

=

(
1 +

qx(x)

px(x)

)−1
=

px(x)

px(x) + qx(x)
.

(10)
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A.5 GENERATED EXAMPLES

A.5.1 PAIRED MNIST

GAN

depGAN

100 500 20000

Figure 7: Paired MNIST examples generated by GAN and FactorGAN for different number of paired
training samples, using λ = 0.9.
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A.5.2 IMAGE PAIRS

Figure 8: GAN generating image pairs for the Cityscapes dataset using 100 paired samples.

Figure 9: GAN (big) generating image pairs for the Cityscapes dataset using 100 paired samples.
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Figure 10: FactorGAN generating image pairs for the Cityscapes dataset using 100 paired samples.

Figure 11: GAN generating image pairs for the Cityscapes dataset using 1000 paired samples.
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Figure 12: GAN (big) generating image pairs for the Cityscapes dataset using 1000 paired samples.

Figure 13: FactorGAN generating image pairs for the Cityscapes dataset using 1000 paired samples.
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Figure 14: GAN generating image pairs using the full Cityscapes dataset.

Figure 15: GAN (big) generating image pairs using the full Cityscapes dataset.
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Figure 16: FactorGAN generating image pairs using the full Cityscapes dataset.

(a) GAN (b) FactorGAN

Figure 17: Image pairs generated for the Edges2Shoes dataset using 100 paired samples.

(a) GAN (b) FactorGAN

Figure 18: Image pairs generated for the Edges2Shoes dataset using 1000 paired samples.
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(a) GAN (b) FactorGAN

Figure 19: Image pairs generated for the Edges2Shoes dataset using all samples as paired.
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A.6 IMAGE SEGMENTATION

(a) GAN (b) FactorGAN

Figure 20: Segmentation predictions made on the Cityscapes dataset for the same set of test inputs,
compared between models, using 100 paired samples for training

(a) GAN (b) FactorGAN

Figure 21: Segmentation predictions made on the Cityscapes dataset for the same set of test inputs,
compared between models, using 1000 paired samples for training
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(a) GAN (b) FactorGAN

Figure 22: Segmentation predictions made on the Cityscapes dataset for the same set of test inputs,
compared between models, using all paired samples for training

Figure 23: CycleGAN generating image pairs for the Cityscapes dataset without any paired samples.
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